Entropic rectification and current inversion in a pulsating channel | M.F.Carusela, J. Miguel Rubi, Journal of Chemical Physics, 146, 18 (2017) [pdf]

We show the existence of a resonant behavior of the current of Brownian particles confined in a pulsating channel. The interplay between the periodic oscillations of the shape of the channel and a force applied along its axis leads to an increase of the particle current as a function of the diffusion coefficient. A regime of current inversion is also observed for particular values of the oscillation frequency and the applied force. The model proposed is based on the Fick-Jacobs equation in which the entropic barrier and the effective diffusion coefficient depend on time. The phenomenon observed could be used to optimize transport in microfluidic devices or biological channels.
  1. 1. W. Suginta and M. F. Smith, Phys. Rev. Lett. 110, 238102 (2013). https://doi.org/10.1103/physrevlett.110.238102, Google ScholarCrossref
  2. 2. L. Brun, M. Pastoriza-Gallego, G. Oukhaled, J. Mathé, L. Bacri, L. Auvray, and J. Pelta, Phys. Rev. Lett. 100, 158302 (2008). https://doi.org/10.1103/physrevlett.100.158302, Google ScholarCrossref, CAS
  3. 3. C. Kreuter, U. Siems, P. Nielaba, P. Leiderer, and A. Erbe, Eur. Phys. J.: Spec. Top. 22(11), 2923–2939 (2013). https://doi.org/10.1140/epjst/e2013-02067-x, Google ScholarCrossref
  4. 4. Z. Siwy, I. D. Kosińska, A. Fuliński, and C. R. Martin, Phys. Rev. Lett. 94, 048102 (2005). https://doi.org/10.1103/physrevlett.94.048102, Google ScholarCrossref, CAS
  5. 5. P. Malgaretti, I. Pagonabarraga, and J. M. Rubi, J. Chem. Phys. 138, 194906 (2013). https://doi.org/10.1063/1.4804632, Google ScholarScitation, ISI
  6. 6. P. Malgaretti, I. Pagonabarraga, and J. M. Rubi, Front. Phys. 1, 21 (2013). https://doi.org/10.3389/fphy.2013.00021, Google ScholarCrossref
  7. 7. P. Malgaretti, I. Pagonabarraga, and J. M. Rubi, Eur. Phys. J.: Spec. Top. 223(14), 3295-3309 (2014). https://doi.org/10.1140/epjst/e2014-02334-4, Google ScholarCrossref
  8. 8. L. Liu, P. Li, and S. A. Asher, Nature 397, 141–144 (1999). https://doi.org/10.1038/16426, Google ScholarCrossref
  9. 9. R. Zwanzig, J. Phys. Chem. 96, 3926 (1992). https://doi.org/10.1021/j100189a004, Google ScholarCrossref, CAS
  10. 10. D. Reguera and J. M. Rubí, Phys. Rev. E 64, 061106 (2001). https://doi.org/10.1103/physreve.64.061106, Google ScholarCrossref, CAS
  11. 11. P. S. Burada, G. Schmid, D. Reguera, J. M. Rubí, and P. Hänggi, Phys. Rev. E 75(5), 051111 (2007). https://doi.org/10.1103/physreve.75.051111, Google ScholarCrossref, CAS
  12. 12. L. Dagdug, A. M. Berezhkovskii, Y. A. Makhnovskii, V. Y. Zitserman, and S. M. Bezrukov, J. Chem. Phys. 136(21), 214110 (2012). https://doi.org/10.1063/1.4726193, Google ScholarScitation
  13. 13. E. Muñoz-Gutiérrez, J. Alvarez-Ramirez, L. Dagdug, and G. Espinosa-Paredes, J. Chem. Phys. 136, 114103 (2012). https://doi.org/10.1063/1.3693332, Google ScholarScitation, CAS
  14. 14. R. Verdel, L. Dagdug, A. M. Berezhkovskii, and S. M. Bezrukov, J. Chem. Phys. 144, 084106 (2016). https://doi.org/10.1063/1.4942470, Google ScholarScitation
  15. 15. U. Gerland, R. Bundschuh, and T. Hwa, Phys. Biol. 1, 19 (2004). https://doi.org/10.1088/1478-3967/1/1/002, Google ScholarCrossref, CAS
  16. 16. R. Bundschuh and U. Gerland, Phys. Rev. Lett. 95, 208104 (2005). https://doi.org/10.1103/physrevlett.95.208104, Google ScholarCrossref
  17. 17. U. F. Keyser, B. N. Koeleman, S. Van Dorp, D. Krapf, R. M. M. Smeets, S. G. Lemay, N. H. Dekker, and C. Dekker, Nat. Phys. 2, 473 (2006). https://doi.org/10.1038/nphys344, Google ScholarCrossref, CAS
  18. 18. V. Kukla, J. Kornatowski, D. Demuth, I. Girnus et al., Science 272(5262), 702 (1996). https://doi.org/10.1126/science.272.5262.702, Google ScholarCrossref, CAS
  19. 19. J. Miekisz, J. Gomulkiewicz, and S. Miekisz, Math. Appl. 42(1), 39–62 (2014). https://doi.org/10.14708/ma.v42i1.469, Google ScholarCrossref
  20. 20. G. M. Makhlouf and K. S. Murthy, Cell. Signalling 9, 269 (1997). https://doi.org/10.1016/s0898-6568(96)00180-5, Google ScholarCrossref, CAS
  21. 21. A. Bergner and M. J. Sanderson, J. Gen. Physiol. 119, 187 (2002). https://doi.org/10.1085/jgp.119.2.187, Google ScholarCrossref, CAS
  22. 22. T. J. Moriarty, M. U. Norman, P. Colarusso, T. Bankhead, P. Kubes, and G. Chaconas, PLoS Pathog. 4, 1000090 (2008). https://doi.org/10.1371/journal.ppat.1000090, Google ScholarCrossref
  23. 23. M. A. Dias and T. R. Powers, Phys. Fluids 25, 101901 (2013). https://doi.org/10.1063/1.4825137, Google ScholarScitation
  24. 24. P. Nagarani and G. Sarojamma, Australas. Phys. Eng. Sci. Med. 30(3), 185 (2007). https://doi.org/10.1007/bf03178425, Google ScholarCrossref, CAS
  25. 25. Y. Mao, S. Chang, S. Yang, Q. Ouyang, and L. Jiang, Nat. Nanotechnol. 2, 366–371 (2007). https://doi.org/10.1038/nnano.2007.148, Google ScholarCrossref, CAS
  26. 26. P. Hänggi and F. Marchesoni, Rev. Mod. Phys. 81, 387 (2009). https://doi.org/10.1103/revmodphys.81.387, Google ScholarCrossref, CAS
  27. 27. P. Hänggi, F. Marchesoni, and F. Nori, Ann. Phys. 14(1-3), 51 (2005). https://doi.org/10.1002/andp.200410121, Google ScholarCrossref
  28. 28. P. Kalinay, Phys. Rev. E 84, 011118 (2011). https://doi.org/10.1103/physreve.84.011118, Google ScholarCrossref
  29. 29. H. Ding, H. Jiang, and Z. Hou, J. Chem. Phys. 143, 244119 (2015). https://doi.org/10.1063/1.4939081, Google ScholarScitation
  30. 30. H. Ding, H. Jiang, and Z. Hou, J. Chem. Phys. 142, 194109 (2015). https://doi.org/10.1063/1.4921372, Google ScholarScitation
  31. 31. P. Reiman, Phys. Rep. 361, 57 (2002). https://doi.org/10.1016/S0370-1573(01)00081-3, Google ScholarCrossref
  32. 32. D. Lairez, M.-C. Clochard, and J.-E. Wegrowe, Sci. Rep. 6, 38966 (2016). https://doi.org/10.1038/srep38966, Google ScholarCrossref, CAS
  33. 33. C. Dalle-Ferrier, M. Krüger, R. D. L. Hanes, S. Walta, M. C. Jenkins, and S. U. Egelhaaf, Soft Matter 7, 2064 (2011). https://doi.org/10.1039/c0sm01051k, Google ScholarCrossref, CAS
  34. 34. B. J. Lopez, N. J. Kuwada, E. M. Craig, B. R. Long, and H. Linke, Phys. Rev. Lett. 101, 220601 (2008). https://doi.org/10.1103/physrevlett.101.220601, Google ScholarCrossref
  35. 35. T. Motz, G. Schmid, P. Hänggi, D. Reguera, and J. M. Rubí, J. Chem. Phys. 141, 074104 (2014). https://doi.org/10.1063/1.4892615, Google ScholarScitation, CAS
  36. 36. D. Reguera, A. Luque, P. S. Burada, G. Schmid, J. M. Rubí, and P. Hänggi, Phys. Rev. Lett. 108, 020604 (2012). https://doi.org/10.1103/physrevlett.108.020604, Google ScholarCrossref, CAS
  37. 37. D. Reguera and J. M. Rubi, Eur. Phys. J.: Spec. Top. 223, 3079 (2014). https://doi.org/10.1140/epjst/e2014-02320-x, Google ScholarCrossref
  38. 38. R. Bartussek and P. Hänggi, “Nonlinear physics of complex systems,” Lect. Notes Phys. 476, 294–308 (2007). https://doi.org/10.1007/BFb0105423, Google ScholarCrossref

Deja un comentario